Bayesian Games

- Games of incomplete information are called Bayesian games
- In Bayesian games, players hold some private information about their own payoff function
- Although the other players don't know the private information, they have some beliefs (probability distribution) about it
- These beliefs are public (are common knowledge)

Agent-type representation

- A simple method of representing static (normal-form) Bayesian game is with the so-called agent-types
- In the pre-game stage, „Nature" determines each agent's type. Agents' types are drawn from commonly known distributions over the set of possible types $T=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, but players learn only their own type, not the type of others
\square A Bayesian game, therefore, consists of $N \times T$ potential types of players
- Note: The distributions of types need not be independent. In all our applications, however, they will be.

Bayesian Nash Equilibrium

- Since each type of agent has a different utility function, each type could have a different best-response correspondence
- We therefore replace the concept of NE with the concept of Bayesian NE (BNE). This is simply a NE in a Bayesian game.
- It is a set of strategies of all agent-types, which are multilateral best-responses. This means that every type of agent i must be responding optimally to the expected action by the other players' types.
- We must specify a strategy for each agenttype

Example: Cournot with assymmetric information

- Two firms compete in the market for homogeneous product: $\mathrm{P}(\mathrm{Q})=\mathrm{a}-\mathrm{Q}$
\square The following information is common knowledge:
- Firm 1's marginal cost is c
- Firm 2's marginal cost is c_{H} with prob. θ or c_{L} with prob. (1-日); $\mathrm{c}_{\mathrm{L}}<\mathrm{C}_{\mathrm{H}}$
- Firm 2 knows its own marginal cost

Example cont.

- Formally, firm 1's type space is $T_{1}=\{c\}$, firm 2's type space is $T_{2}=\left\{\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{H}}\right\}$
- A BNE will consist of 3 strategies, one for each agent-type. Let's find the best-response functions.
- Agent-type C_{H} of firm 2 maximizes:

$$
\max _{q_{2}}\left[\left(a-q_{1}^{*}-q_{2}\right)-c_{H}\right] q_{2}
$$ and the best response is

$$
q_{2}^{*}\left(c_{H}\right)=\left(a-q_{1}^{*}-c_{H}\right) / 2
$$

- Agent-type C_{L} of firm 2 maximizes:

$$
\max _{q_{2}}\left[\left(a-q_{1}^{*}-q_{2}\right)-c_{L}\right] q_{2} \quad \begin{gathered}
\text { and the best resp } \\
q_{2}^{*}\left(c_{L}\right)
\end{gathered}=\left(a-q_{1}^{*}-c_{L}\right) / 220
$$

Example cont.

- Player 1 (only one type) maximizes:

$$
\max _{q_{1}} \theta\left[\left(a-q_{1}-q_{2}^{*}\left(c_{H}\right)\right)-c\right] q_{1}+(1-\theta)\left[\left(a-q_{1}-q_{2}^{*}\left(c_{L}\right)\right)-c\right] q_{1}
$$

- And the best response is:

$$
q_{1}^{*}=\theta\left[\left(a-q_{2}^{*}\left(c_{H}\right)\right)-c\right]+(1-\theta)\left[\left(a-q_{2}^{*}\left(c_{L}\right)\right)-c\right]
$$

\square Solving the 3 equations yields:

$$
\begin{aligned}
& q_{2}^{*}\left(c_{H}\right)=\frac{a-2 c_{H}+c}{3}+\frac{1-\theta}{6}\left(c_{H}-c_{L}\right) \\
& q_{2}^{*}\left(c_{L}\right)=\frac{a-2 c_{L}+c}{3}-\frac{\theta}{6}\left(c_{H}-c_{L}\right) \\
& q_{1}^{*}=\frac{a-2 c+\theta c_{H}+(1-\theta) c_{L}}{3}
\end{aligned}
$$

Double auction

- 2 players: buyer and seller
- Players learn their valuations of the good $\left(v_{s}, v_{b}\right)$ privately. The distribution of valuations, however, is commonly known
- Both players submit prices $\left(\mathrm{b}_{\mathrm{s}}, \mathrm{b}_{\mathrm{b}}\right)$
- If the buyer bid is greater than the seller bid $\left(\mathrm{b}_{\mathrm{s}} \leq \mathrm{b}_{\mathrm{b}}\right)$, then they trade the good at the price $p=\left(b_{s}+b_{b}\right) / 2$, and the payoffs are $v_{b}-p$ for the buyer and $p-v_{s}$ for the seller
- Otherwise there is no trade and the payoffs are zero for both players

Example: Double auction

■ Agent types are the different possible valuations $\left(\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{b}}\right)$. Let us assume that they are distributed independently uniformly on the [0, 1] interval.

- Each agent-type of the buyer maximizes

$$
\max _{b_{b}}\left[v_{b}-\frac{b_{b}+E\left[b_{s}\left(v_{s}\right) \mid b_{b} \geq b_{s}\left(v_{s}\right)\right]}{2}\right] \operatorname{Pr} o b\left\{b_{b} \geq b_{s}\left(v_{s}\right)\right\}
$$

- Each agent-type of the buyer maximizes $\max _{b_{s}}\left[\frac{b_{s}+E\left[b_{b}\left(v_{b}\right) \mid b_{b}\left(v_{b}\right) \geq b_{s}\right]}{2}-v_{s}\right] \operatorname{Pr} o b\left\{b_{b}\left(v_{b}\right) \geq b_{s}\right\}$

Double auction cont.

- There are many BNE of this game
- One class of equilibria are the „one price" equilibria. In these equilibria, all trades are made at the same price x (between 0 and 1).
- Seller types ask
$\square \mathrm{b}_{\mathrm{s}}=x$ if $\mathrm{v}_{\mathrm{s}} \leq x$
$\square \mathrm{b}_{\mathrm{s}}=1$ if $\mathrm{v}_{\mathrm{s}}>x$
- Buyer types bid
$\square \mathrm{b}_{\mathrm{b}}=x$ if $\mathrm{v}_{\mathrm{b}} \geq x$
$\square b_{b}=0$ if $v_{s}<x$

Double auction cont.

- Another class of equilibria are „linear" BNE. In these equilibria, players submit bids that are linearly related to their true valuations
- $b_{s}\left(v_{s}\right)=a_{s}+c_{s} v_{s}$
- $b_{b}\left(v_{b}\right)=a_{b}+c_{b} v_{b}$
- Let's find a_{s}, c_{s}, a_{b} and c_{b}

Double auction cont.

- Since the seller's strategy is linear, from the viewpoint of the buyer, the seller bids are distributed uniformly on $\left[a_{s}, a_{s}+c_{s}\right.$]. Then buyer's problem becomes:

$$
\max _{b_{b}}\left[v_{b}-\frac{1}{2}\left(b_{b}+\frac{a_{s}+b_{b}}{2}\right)\right] \frac{b_{b}-a_{s}}{c_{s}}
$$

\square And the f.o.c. yields:

$$
b_{b}=\frac{2}{3} v_{b}+\frac{1}{3} a_{s}
$$

Double auction cont.

- Since the buyer's strategy is linear, from the viewpoint of the seller, the buyer bids are distributed uniformly on $\left[a_{b}, a_{b}+c_{b}\right]$. Then buyer's problem becomes:

$$
\max _{b_{s}}\left[\frac{1}{2}\left(b_{s}+\frac{\left.b_{s}+a_{b}+c_{b}\right]}{2}\right)-v_{s}\right] \frac{a_{b}+c_{b}-b_{s}}{c_{b}}
$$

\square And the f.o.c. yields:
$b_{s}=\frac{2}{3} v_{s}+\frac{1}{3}\left(a_{b}+c_{b}\right)$

Double auction cont.

- The equilibrium strategies in the linear BNE are:

$$
\begin{aligned}
& b_{b}\left(v_{b}\right)=\frac{2}{3} v_{b}+\frac{1}{12} \\
& b_{s}\left(v_{s}\right)=\frac{2}{3} v_{s}+\frac{1}{4}
\end{aligned}
$$

\square And trade occurs whenever $b_{b} \geq b_{s}$, i.e. when $\mathrm{v}_{\mathrm{b}} \geq \mathrm{v}_{\mathrm{s}}+(1 / 4)$

First-price auction

- Two bidders (potential buyers)
\square Valuations of the good $\left(v_{1}, v_{2}\right)$ drawn independently from a uniform distribution on the interval $[0,1]=\mathrm{T}_{1}=\mathrm{T}_{2}$
- Payoff for player i :
$\square v_{i}-b_{i}$
if $b_{i}>b_{j}$
$\square\left(v_{i}-b_{i}\right) / 2$
if $b_{i}=b_{j}$
$■ 0$
if $b_{i}<b_{j}$

FPA cont.

■ Suppose that player j adopts the strategy $b_{j}\left(v_{j}\right)=a_{j}+c_{j} v_{j}$

- Player i solves:

$$
\begin{aligned}
& \max _{b_{i}}\left(v_{i}-b_{j}\right) \operatorname{Prob}\left\{b_{i}>b_{j}\left(v_{j}\right)\right\}+ \\
+ & (1 / 2)\left(v_{i}-b_{j}\right) \operatorname{Prob}\left\{b_{i}=b_{j}\left(v_{j}\right)\right\}+ \\
+ & \text { OProb }\left\{b_{i}<b_{j}\left(v_{j}\right)\right\}
\end{aligned}
$$

Which reduces to

$$
\max _{b_{i}}\left(v_{i}-b_{j}\right) \operatorname{Prob}\left\{b_{i}>a_{j}+c_{j} v_{j}\right\}
$$

FPA cont.

$\square \operatorname{Prob}\left\{\mathrm{b}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right\}=\operatorname{Prob}\left\{\mathrm{v}_{\mathrm{j}}<\left(\mathrm{b}_{\mathrm{i}}-\mathrm{a}_{\mathrm{j}}\right) / \mathrm{c}_{\mathrm{j}}\right\}=$

$$
=\int_{0}^{\left(b_{i}-a_{j}\right) / c_{j}} f\left(v_{j}\right) d v_{j}=\left[\left(\mathrm{b}_{\mathrm{i}}-\mathrm{a}_{\mathrm{j}}\right) / \mathrm{c}_{\mathrm{j}}\right] / 1
$$

- Therefore player i solves: $\max _{b_{i}}\left(v_{i}-b_{i}\right)\left(b_{i}-a_{j}\right) / c_{j}$
- F.O.C.:
$-1\left(\mathrm{~b}_{\mathrm{i}}-\mathrm{a}_{\mathrm{j}}\right) / \mathrm{c}_{\mathrm{j}}+\left(\mathrm{v}_{\mathrm{i}}-\mathrm{b}_{\mathrm{i}}\right) / \mathrm{c}_{\mathrm{j}}=0$
- Player i 's best response $\left(\mathrm{b}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$ is:
- $\left(v_{i}+a_{j}\right) / 2$ if $v_{i} \geq a_{j}$
$\square a_{j} \quad$ if $v_{i}<a_{j}\left(\right.$ as $\left.a_{j} \leq b_{i}\right)$
because $\mathrm{a}_{\mathrm{j}} \leq \mathrm{b}_{\mathrm{i}} \leq \mathrm{a}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}}$

FPA cont.

- If $\mathrm{a}_{\mathrm{j}} \geq 1 \Rightarrow \mathrm{~b}_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}\right) \geq \mathrm{v}_{\mathrm{j}}$, since $\mathrm{c}_{\mathrm{j}} \geq 0$, but that cannot be optimal
- If $0<a_{j}<1 \Rightarrow$ then there are cases when $v_{i}<a_{j}$, in which case $b_{i}\left(v_{i}\right)$ is not linear $v_{i}<a_{j}$, then $b_{i}\left(v_{i}\right) \neq a_{j}$ since no player should be bidding more than his valuation, i.e. $0 \Rightarrow$ it cannot be a linear equilibrium
\square So we must have $\mathrm{a}_{\mathrm{j}} \leq 0 \Rightarrow \mathrm{v}_{\mathrm{i}} \geq \mathrm{a}_{\mathrm{j}} \Rightarrow \mathrm{b}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}} / 2$ $+\mathrm{a}_{\mathrm{j}} / 2 \Rightarrow \mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{j}} / 2$ and $\mathrm{c}_{\mathrm{i}}=1 / 2$
\square Symmetry implies $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{j}}=0, \mathrm{c}_{\mathrm{i}}=\mathrm{c}_{\mathrm{j}}=1 / 2, \mathrm{~b}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}} / 2$

Market game

- 2*N players: N buyers and N sellers
- Players learn their valuations of the good $\left(\mathrm{v}_{\mathrm{s} 1}, \mathrm{v}_{\mathrm{s} 2}, \ldots, \mathrm{v}_{\mathrm{s} N} ; \mathrm{v}_{\mathrm{b} 1}, \mathrm{v}_{\mathrm{b} 2}, \ldots, \mathrm{v}_{\mathrm{bN}}\right)$ privately. The distribution of valuations, however, is commonly known
- All players submit bids
$\left(b_{s 1}, b_{s 2}, \ldots, b_{s N} ; b_{b 1}, b_{b 2}, \ldots, b_{b N}\right)$
- An auctioneer (not a player), re-orders the seller bids from lowest to highest (Supply curve), and buyers bids from highest to lowest (Demand curve). The price is determined as $p=\left(b_{s k}+b_{b k}\right) / 2$, where k is the highest index of re-ordered bids,
for which $\mathrm{b}_{\mathrm{s}} \leq \mathrm{b}_{\mathrm{b}}$
- The payoffs are $\mathrm{v}_{\mathrm{bi}}-\mathrm{p}$ for the first k the buyers and p $-\mathrm{v}_{\mathrm{si}}$ for the first k sellers, zero for all others

